Appendix A9.1 Noise & Vibration Survey

Contents

Appen	dix A9.1: Noise and Vibration Survey	. 1
1.	Baseline Noise Monitoring	. 2
1.1	Introduction	. 2
1.2	Survey Methodology	. 2
1.3	Survey Results	. 5
2.	Baseline Vibration Monitoring	. 9
2.1	Introduction	. 9
2.2	Survey Methodology	. 9
2.3	Survey Results – Harristown Bus Depot	12
2.4	Survey Results – Malahide Road	15
3.	References	19
4.	Calibration Certificates for Monitoring Equipment	20
4.1	Rion NL-52 S/N 186672	21
4.2	Rion NL-52 S/N 186668	24
4.3	Bruel and Kjaer 2250L	27
4.4	Rion VM-56 (S/N 680043)	31
5.	Unattended Monitoring Equipment Set Up	35

Appendix A9.1: Noise and Vibration Survey

1. Baseline Noise Monitoring

1.1 Introduction

This report includes the relevant survey details and results associated with baseline noise monitoring undertaken as part of the Clongriffin to City Centre Core Bus Corridor (hereafter referred to as the Proposed Scheme). The survey has been undertaken to inform the noise and vibration chapter of the Proposed Scheme EIAR.

Survey details and results for each of the noise monitoring locations are included within this report.

1.2 Survey Methodology

1.2.1 Study Area

A full description of the Proposed Scheme can be found in Chapter 4 (Proposed Scheme Description) in Volume 2 of this EIAR. The assessment study area is split into two geographical zones. The range of noise and vibration sensitive locations along the Proposed Scheme for the two geographic sections are discussed in Table 1.

Tahla	1. Descri	ntion of	Noico	Sonsitivo	I ocations	(NSI c)	Across	the Study	/ Area
Iable	I. Descii	ριισπ σι	110126	Sensitive	LUCALIONS	(11015)	ACI 055	ine Siuu	Alea

Geographical Zone	Description of Study Area
Mayne River Avenue to Gracefield Road - Malahide Road	The key noise and vibration sensitive areas are predominately residential NSLs, which bound the east and west of the Proposed Scheme within 50m to 100m of the Proposed Scheme. The Hilton Dublin Airport Hotel is within 30m of the Proposed Scheme west of the Malahide Road / R139 junction. There are some sections of less sensitive industrial receptors between Priorswood Road and the Oscar Traynor Road to the west of the Proposed Scheme. There are two secondary schools (Chanel Catholic College and Mercy College) and a church (St. Brendan's Catholic Church) within 200m of the Proposed Scheme at the junction of the Malahide Road and Main Street, Coolock. An amenity area of O'Toole's GAA pitch is within 50m to 100m of the road, between Grove Park and Blunden Drive.
Gracefield Road to Marino Mart / Fairview - Malahide Road	The key noise and vibration sensitive areas are predominately residential dwellings, which are located between 10m to 50m to the east and west of the Proposed Scheme. The Proposed Scheme passes within 50m of Donnycarney Church (Our Lady of Consolation) and Nazareth House nursing home. Amenity areas within 50m to 100m of the Proposed Scheme are St David's Park, Maypark, Thorndale Park, Clontarf Golf Club, Marino Crescent Park and St. Aidan's Park.

1.2.2 Survey Locations

Baseline noise surveys have been conducted at locations representative of the nearest noise sensitive areas which have the potential to be impacted by construction works and/or those likely to be impacted during the Operational Phase of the Proposed Scheme. Baseline noise measurements were made over both long-term and short-term periods to inform the assessment.

- Long-term surveys (typically one week in duration) were made at a total of one location.
- Short-term surveys (attended day-time measurements), were made at a total of ten locations along the length of the Proposed Scheme.

Figure 9.2 in Volume 3 of this EIAR illustrates the baseline noise monitoring locations. Each is discussed in the relevant geographical zone in the following sections.

1.2.2.1 Mayne River Avenue to Gracefield Road - Malahide Road

A total of four attended survey locations were surveyed within this study area. The location reference and a description of survey positions are included in Table 2.

Location	Description of Survey Location
Attended Monitoring Locations	
CBC0001ANML001	On footpath in green area to northeast of R107 Malahide Road, in line with closest NSLs to north of Belmayne Main Street, approximately 150m from R107 Malahide Road.
CBC0001ANML002	On footpath to northwest of R107 Malahide Road / R139 junction in line with façade of Hilton Hotel approximately 20m to R107 road edge.
CBC0001ANML003	Green area to south of Ayrefield Drive housing estate, in line with residential facades facing onto R107 Malahide Road. Located approximately 30m to R107 Malahide Road edge.
CBC0001ANML004	On footpath to southeast of R107 Malahide Road / R808 Gracefield Road Junction, in line with residential facades facing onto R107 Malahide Road. Located approximately 10m to R107 road edge.

Table 2: Noise Monitoring Locations – Mayne River Avenue to Gracefield Road - Malahide Road

1.2.2.2 Gracefield Road to Marino Mart / Fairview – Malahide Road

A total of one long-term unattended monitoring location and six attended survey locations were surveyed within this study area. The location reference and a description of survey positions are included in Table 3.

Location	Description of Survey Location						
Unattended Monitoring Locations							
CBC0001UNML001	Located in front garden of residential garden 125m to northwest of R107 Malahide Road / Kilmore Road junction. Located approximately 5m from R107 road edge.						
Attended Monitoring Locations							
CBC0001ANML005	On footpath in St. David's Wood housing estate, in line with closest residential facades facing onto R107 Malahide Road. Located approximately 30m to R107 road edge.						
CBC0001ANML006	On footpath to northeast of R107 Malahide Road / R103 Collins Avenue East junction, in line with residential facades along R107 Malahide Road. Located approximately 20m to R107 road edge.						
CBC0001ANML007	To north of Nazareth House residential nursing home, in line with façade facing onto R107 Malahide Road. Located approximately 25m to R107 road edge.						
CBC0001ANML008	On footpath at Mount Temple Highschool entrance, in line with residential facades facing onto R107 Malahide Road. Located approximately 20m to R107 road edge.						
CBC0001ANML009	On footpath to south of R107 Malahide Road / Crescent Place junction, in line with residential facades to the north, facing onto R107 Malahide Road. Located approximately 10m to road edge.						
CBC0001ANML010	On footpath to northwest of R107 Malahide Road / St. Aidan's Park Road junction, in line with residential facades facing onto R107 Malahide Road. Located approximately 20m to R107 road edge.						

1.2.3 Survey Periods

An unattended noise survey was undertaken between 2 September 2020 and 9 September 2020. The specific survey dates for the location is included in the survey results tables in Section 1.3.

Attended noise surveys were undertaken between 26 June 2020 and 9 September 2020. The specific survey dates and times for each location are included in the survey results tables in Section 1.3.

1.2.4 Survey Equipment and Personnel

The unattended survey was undertaken using RION NL-52 sound level meter. The attended surveys were undertaken using either RION NL-52 or Bruel and Kjær 2250L sound level meters. The specific equipment details are summarised in Table 4.

Table 4: Noise Monitoring Equipment

Survey Type	Equipment	Serial Number	Calibration Date
Unattended	Rion NL-52	186672	04/05/2020
Attended	Rion NL-52	186668	07/05/2020
	Bruel and Kjær 2250L	3008402	04/11/2019

Calibration certificates of the monitoring equipment are included within Section 4.

For unattended surveys, a Rion WS-15 Outdoor Microphone Protection System with microphone extension cable and outdoor peli-case was used. An image of the equipment install at each monitoring location is included in Section 5.

The surveys were conducted by Jack Brennan and Alex Ryan, acoustic technicians, AWN Consulting.

1.2.5 Survey Parameters

The following noise parameters were measured and are discussed within this report.

L_{Aeq,T} is the A-weighted equivalent continuous steady sound level during the sample period and effectively represents an average value of the defined measurement period, T.

L_{Aeq,16hr} refers to the ambient daytime period between 07:00 and 23:00hrs.

L_{A10,T} is the A-weighted sound level that is exceeded for 10% of the sample period; this parameter gives an indication of the upper limit of fluctuating noise such as that from road traffic. The T is the sample period the parameter is measured over.

L_{A10,18hr} is the L_{A10} parameter between 06:00 and 00:00hrs as defined within the Calculation of Road Traffic Noise (hereafter referred to as CRTN) (UK Department of Transport 1998).

LA90,T is the A-weighted sound level that is exceeded for 90% of the sample period; generally used to quantify background noise. The T is the sample period the parameter is measured over.

LA90,16hr, refers to the background daytime noise level between 07:00 and 23:00hrs

LA90,8hr, refers to the background night-time noise level between 23:00 and 07:00hrs

The L_{den} parameter is also discussed within the report. For long-term survey locations, this parameter is derived from the L_{Aeq} data over each 24 hour period as is defined as follows:

L_{den} is the 24hour noise rating level determined by the averaging of the L_{day} with the L_{evening} (plus a 5dB penalty) and the L_{night} (plus a 10dB penalty). L_{den} is calculated using the following formula, as defined within the Environmental Noise Regulations (S.I.140 / 2006):

$$L_{\text{den}} = 10\log\left(\frac{1}{24}\right) \left(12 * \left(10^{\frac{Lday}{10}}\right) + 4 * \left(10^{\frac{Levening+5}{10}}\right) + 8 * \left(10^{\frac{Lnight+10}{10}}\right)\right)$$

Where:

- L_{day} is the A-weighted long-term average sound level as defined in ISO 1996-2:2017 Part 2: Determination of sound pressure levels (hereafter referred to as ISO 1996-2) (ISO 2017), determined over all the day periods of a year. The 12hr daytime period is between 07:00 to 19:00hrs.
- L_{evening} is the A-weighted long-term average sound level as defined in ISO 1996-2, determined over all the evening periods of a year. The 4hr evening period is between 19:00 to 23:00hrs.

L_{night} is the A-weighted long-term average sound level as defined in ISO 1996-2, determined over all the night periods of a year. The 8hr night-time period is between 23:00 to 07:00hrs.

1.2.6 Survey Procedure

Noise measurements were conducted in general accordance with the guidance contained in ISO 1996-1:2016 Acoustics – Description measurement and assessment and environmental noise. Part 1: Basic quantities and assessment procedures (hereafter referred to as ISO 1996-1) (ISO 2016) and ISO 1996-2 (ISO 2017).

1.2.6.1 Unattended Measurements

For unattended noise surveys, the monitoring equipment was installed within the private grounds of a residential property. The microphone was installed at a height of approximately 3.8m above ground. The equipment was set to log for 15 minute intervals on a continual basis over a one week period.

1.2.6.2 Attended Measurements

Attended noise surveys were undertaken at public locations at positions representative of the adjacent noise sensitive locations (e.g. on green areas in residential areas, footpaths, parks etc.). For all attended surveys, the microphone was positioned at height of approximately 1.2m above ground.

The attended surveys were undertaken in accordance with the shortened measurement procedure described in CRTN (UK Department of Transport 1998) and Transport Infrastructure Ireland's (TII) document Guidelines for the Treatment of Noise and Vibration on National Road (TII 2004).

This methodology involves a method whereby $L_{A10(18hour)}$ and L_{den} values are obtained through a combination of measurement and calculation as follows:

- Noise level measurements are undertaken at the chosen location over three consecutive hours between 10:00 and 17:00hrs.
- Each sample period was measured over a 15 minute duration.
- The LA10(18hour) for the location is derived by subtracting 1 dB from the arithmetic average of the three hourly sample values, i.e.

 $L_{A10(18hour)} = ((\sum L_{A10(15 \text{ minutes})}) \div 3) - 1 \text{ dB}.$

• The derived L_{den} value is calculated from the L_{A10(18hour)} value, i.e. L_{den} = $0.86 \times L_{A10(18hr)} + 9.86 \text{ dB}.$

1.3 Survey Results

1.3.1 Mayne River Avenue to Gracefield Road - Malahide Road

1.3.1.1 Attended Surveys

The attended noise survey results recorded during the baseline surveys within this study area are presented in Table 5.

Jacobs ARUP SYSTIA

Attended Location	Date	Start Time	Measure (dB re.2)	d Noise L (10⁻⁵Pa)	evels	Derived L _{den}	Survey Notes				
			L _{Aeq}	L _{A10}	L _{A90}						
CBC0001ANML001	26/06/2020	10:04	51	54	46 56		Road traffic noise from R107 Malahide Road dominant noise source with local traffic on Belmayne Main Street,				
		11:38	53	56	49		pedestrian conversation.				
		13:07	53	55	48		Road traffic noise from R107 Malahide Road dominant noise source, with local traffic on Belmayne Main Street, birdsong, dogs barking, aircraft flyover, pedestrian conversation.				
CBC0001ANML002	09/09/2020	10:45	70	73	65	72	Road traffic noise from R107 Malahide Road and R139 dominant noise source.				
		12:36	71	73	66						
		14:13	70	72	65						
CBC0001ANML003	26/06/2020	10:37	54	56	49	58	Road traffic noise from R107 Malahide Road dominant noise source, birdsong, drilling noise.				
		12:08	56	58	50		Road traffic noise from R107 Malahide Road dominant noise source, birdsong, refuse truck pass by.				
		13:37	57	58	52		Road traffic noise from R107 Malahide Road dominant noise source, birdsong, children talking, distant machinery noise, pedestrian conversation.				
CBC0001ANML004	26/06/2020	11:06	65	67	59	67	Road traffic noise from R107 Malahide Road / R808 Gracefield Road junction dominant noise source, local road movements, beeping from pedestrian crossing, pedestrian conversation.				
		12:37	65	68	58		Road traffic noise from R107 Malahide Road / R808 Gracefield Road junction dominant noise source, local road movements, beeping from pedestrian crossing, pedestrian conversation, music from car pass by.				
		14:05	65	68	59		Road traffic noise from R107 Malahide Road / R808 Gracefield Road junction dominant noise source, local movements, beeping from pedestrian crossing, pedestrian conversation, car horn.				

Table 5: Attended Noise Survey Results for Mayne River Avenue to Gracefield Road – Malahide Road

1.3.2 Gracefield Road to Marino Mart / Fairview – Malahide Road

1.3.2.1 Unattended Surveys

The noise survey results recorded during the baseline surveys within this study area are presented in Table 6.

Survey Date	Daytime				Evening Night-Time				L _{den}	
	L _{Aeq,16hr}	L _{day}	L _{A10,16hr}	L _{A90,16hr}	L _{evening}	L _{night}	L _{A10,8hr}	L _{A90,8hr}		
CBC0001UNML001										
02/09/2020	68	68	71	57	67	65	67	41	72	
03/09/2020	68	69	71	57	68	65	67	43	72	
04/09/2020	70	69	71	59	71	64	67	44	73	
05/09/2020	69	69	72	57	68	63	66	41	71	
06/09/2020	67	68	71	55	67	64	65	40	71	
07/09/2020	68	69	71	57	67	64	66	40	72	
08/09/2020	68	68	71	57	67	65	66	41	72	
Average	68	69	71	57	68	64	66	41	72	

Table 6: Unattended Noise Survey Results for Gracefield Road to Marino Mart / Fairview- Malahide Road

Road traffic from R107 Malahide Road is the dominant noise source at the monitoring position in the vicinity of the Proposed Scheme. During daytime periods, average ambient noise levels recorded were in the range of 67 to 70 dB $L_{Aeq,16hr}$. Average background daytime noise levels were measured in the range of 55 to 59 dB $L_{A90,16hr}$.

Night-time noise levels at the monitoring location were dominated by road traffic from R107 Malahide Road. Average ambient night-time noise levels were measured in the range of 63 to 65 dB $L_{Aeq,8hr}$. Average background noise levels during this time period were measured in the range of 40 to 44 dB $L_{A90,8hr}$.

The measured L_{den} values at the monitoring location ranged between 71 to 73 dB L_{den} .

1.3.2.2 Attended Surveys

The attended noise survey results recorded during the baseline surveys within this study area are presented in Table 7.

Jacobs ARUP SYSTIA

Table 7: Attended Noise Survey Results for Gracefield Road to Marino Mart / Fairview – Malahide Road

Attended Location Date		Start Time	Measured Noise Levels (dB re.2x10 ⁻⁵ Pa)			Derived L _{den}	Survey Notes			
				L _{A10}	L _{A90}					
CBC0001ANML005	26/06/2020	14:32	56	57	51	59	Road traffic noise from R107 Malahide Road dominant noise source, birdsong, pedestrian conversation.			
			56	58	52		Road traffic noise from R107 Malahide Road dominant noise source, birdsong.			
		16:09	57	59	53		Road traffic noise from R107 Malahide Road dominant noise source, birdsong, pedestrian conversation, aircraft flyover, dogs barking.			
CBC0001ANML006	26/06/2020	14:59	69	70	60	69	Road traffic noise from R107 Malahide Road and R103 Collins Avenue East dominant noise source, siren and car horns.			
	15:45 67		67	70	60		Road traffic noise from R107 Malahide Road and R103 Collins Avenue East dominant noise source, pedestrian conversation and car horns.			
		16:32	67	70	59		Road traffic noise from R107 Malahide Road and R103 Collins Avenue East dominant noise source, car horns.			
CBC0001ANML007	26/06/2020	10:00	63	67	54	66	Road traffic noise from R107 Malahide Road dominant noise source, birdsong.			
		11:04	62	66	52					
		12:04	63	66	56		Road traffic noise from R107 Malahide Road dominant noise source, birdsong, pedestrian conversation, car horn.			
CBC0001ANML008	09/09/2020	12:05	60	63	54	62	Road traffic noise from R107 Malahide Road dominant noise source.			
		13:42	59	62	54					
		15:19	58	61	51					
CBC0001ANML009	26/06/2020	10:22	69	72	57	70	Road traffic noise from R107 Malahide Road dominant noise source, hedge cutting.			
		11:24	68	71	58		Road traffic noise from R107 Malahide Road dominant noise source, music from car radio pass by.			
		12:32	67	71	58		Road traffic noise from R107 Malahide Road dominant noise source.			
CBC0001ANML010	26/06/2020	10:44	63	66	57	66	Road traffic noise from R107 Malahide Road dominant noise source, car horn.			
		11:43	64	66	58					
		12:51	65	66	57		Road traffic noise from R107 Malahide Road dominant noise source, with increase in Heavy Goods Vehicles.			

2. Baseline Vibration Monitoring

2.1 Introduction

This section includes the relevant survey details and results associated with baseline vibration surveys conducted as part of the overall Bus Connects Dublin – Core Bus Corridor Infrastructure Works (hereafter referred to as the Proposed Works). Baseline vibration data obtained from this study has been used to information all individual Bus Connects Core Bus Corridor Schemes.

2.2 Survey Methodology

2.2.1 Survey Locations

Attended vibration monitoring was undertaken a at sample locations adjacent to existing bus lanes within Dublin City. The surveys were undertaken to obtain typical baseline vibration levels along roads with both mixed vehicular traffic lanes and individual bus lanes. This information has been used to inform the operational vibration impact assessment for the Proposed Works.

Surveys were also undertaken along an access road to the Harristown Bus Depot, Horizon Logistics Park, Swords, Co. Dublin, to obtain a measurement of vibration relating to specific bus drive by in isolation at a controlled sampling location to characterise the specific vibration level associated with buses in the absence of other traffic. A description of the survey locations is set out in Table 8.

Vibration Monitoring Locations	Description of Survey Location
AVML001	Harristown – Entrance Road to Bus Depot, midway along inbound road, 5m from road edge
AVML002	Harristown - Roundabout at Bus Depot entrance, buses entering depot, 5m from road edge
AVML003	Harristown - Roundabout at Bus Depot entrance, buses exiting depot, 5m from road edge
AVML004	Harristown – Entrance Road to Bus Depot, midway along outbound road, 5m from road edge
AVML005	Harristown – Entrance Road to Bus Depot, midway along inbound road, 7m from road edge
AVML006	Malahide Road / St. Johns Court – 5m from edge of Inbound Bus Lane
AVML007	Malahide Road / St. Johns Court – 10m from edge of Inbound Bus Lane
AVML008	Malahide Road / Donnycarney Church – 2.5m from edge of Inbound Bus Lane
AVML009	Malahide Road– 2.5m from edge of outbound Bus Lane

Table 8: Vibration Monitoring Locations

The survey locations undertaken along the Harristown Bus Depot entrance are illustrated in Image 1. The survey locations undertaken along the Malahide Road are illustrated in Image 2.

Image 1: Vibration Monitoring Locations Harristown Bus Depot (source Google Earth)

Image 2: Vibration Monitoring Locations Malahide Road (source Google Earth)

2.2.2 Survey Periods

Vibration monitoring was undertaken on the following dates:

- AVML001 AVML005: 30th July 2020; and
- AVML005 AMML009: 13th August 2020.

2.2.3 Survey Equipment and Personnel

The survey was undertaken using a RION VM-56 vibration meter (S/N 680043) with PV-83D tri-axial accelerometer. Calibration certificate of monitoring equipment are included within Section 4.

The surveys were conducted Alex Ryan and David O'Donoghue, acoustic technicians, AWN Consulting.

2.2.4 Survey Procedure

Vibration measurements were conducted in general accordance with the guidance contained in British Standard BS 7385. Part 1: Guide for measurement of vibrations and evaluation of their effects on buildings (1990).

Vibration was measured in the three orthogonal axes. The accelerometer was secured in place with a 5kg sandbag at all monitoring locations.

The equipment was set to log for one minute intervals on a continual basis with an instantaneous storage interval of 100ms. Vibration monitoring periods at AVML001 to AVML005 along the entrance road to Harristown Bus Depot were undertaken for a period of 15 minutes at each position. Vibration monitoring periods at AVML006 to AVML009 along the Malahide Road were undertaken for a period of 30 minutes at each position.

2.2.5 Survey Parameters

The following vibration parameters are discussed within this report.

PPV Peak Particle Velocity (PPV) is a measure of the velocity of vibration displacement in terms of millimetres per second (mm/s). It is defined as follows within BS 7385: (1990) as:

'the maximum instantaneous velocity of a particle at a point during a given time interval'

VDV Vibration Dose Value (VDV) is an evaluation of human exposure to vibration in buildings. It defines a relationship that yields a consistent assessment of continuous, intermittent, occasional and impulsive vibration and correlates well with subjective response. It is defined as follows within British Standard BS 6472: (2008) Guide to evaluation of human exposure to vibration in buildings (2008): Part 1 - Vibration sources other than blasting, as:

'The VDV is the fourth root of the integral of the fourth power of acceleration after it has been frequency-weighted (as defined in BS6472: 2008). The frequency-weighted acceleration is measured in m/s2 and the time period over which the VDV is measured is in seconds. This yields VDVs in m/s1.75'

The frequency weightings used in the BS 6472 (2008) document is Wb weighting for vertical axis and Wd for the horizontal axes.

2.3 Survey Results – Harristown Bus Depot

The vibration survey results measured at each location are presented for each pass by event (bus drive by) in terms of the PPV parameter in mm/s and in terms of the VDV parameter in m/s^{1.75} for each axis.

2.3.1 Location AVML001

Table 9 presents the results of vibration values associated with individual bus drive events by during the monitoring period at this location.

Table 9: Vibration Monitoring Results at ANML001

Event Time	PPV, mm/s			VDV,,, m/s ^{1.75}			
	x	Y	z	X	Υ	Z	
14:57	0.05	0.05	0.06	0.0003	0.0003	0.0020	
15:01	0.03	0.04	0.04	0.0002	0.0003	0.0016	
15:02	0.03	0.03	0.03	0.0002	0.0002	0.0008	
15:03	0.02	0.04	0.04	0.0001	0.0002	0.0016	
15:04	0.03	0.02	0.06	0.0002	0.0002	0.0022	
15:05	0.04	0.05	0.08	0.0002	0.0002	0.0028	
15:06	0.03	0.04	0.03	0.0002	0.0002	0.0013	
15:07	0.03	0.04	0.05	0.0002	0.0002	0.0018	
Minimum event	0.02	0.02	0.03	0.0001	0.0002	0.0008	
Maximum event	0.05	0.05	0.08	0.0003	0.0003	0.0028	

2.3.2 Location AVML002

Table 10 presents the results of vibration values associated with individual bus drive events by during the monitoring period at this location.

Event Time	PPV, mm/s			VDV, _b , m/s ^{1.75}			
	x	Y	Z	x	Y	Z	
15:22	0.03	0.03	0.08	0.0002	0.0002	0.0019	
15:26	0.02	0.03	0.03	0.0002	0.0002	0.0012	
15:29	0.02	0.07	0.09	0.0002	0.0003	0.0014	
15:30	0.02	0.02	0.07	0.0001	0.0002	0.0019	
15:31	0.03	0.04	0.06	0.0002	0.0002	0.0024	
15:32	0.02	0.03	0.07	0.0002	0.0002	0.0022	
15:33	0.03	0.03	0.06	0.0002	0.0002	0.0014	
15:34	0.02	0.02	0.04	0.0001	0.0002	0.0016	
Minimum event	0.03	0.07	0.09	0.0002	0.0003	0.0024	
Maximum event	0.02	0.02	0.03	0.0001	0.0002	0.0012	

Table 10: Vibration Monitoring Results at ANML002

2.3.3 Location AVML003

Table 11 presents the results of vibration values associated with individual bus drive events by during the monitoring period at this location.

Event Time	PPV, mm/s			VDV, _{b,d} , m/s ^{1.75}				
	X	Y	z x		Y	Z		
15:40	0.06	0.06	0.09	0.0003	0.0003	0.0031		
15:43	0.07	0.05	0.07	0.0003	0.0003	0.0027		
15:44	0.04	0.05	0.06	0.0002	0.0003	0.0021		
15:45	0.07	0.05	0.07	0.0003	0.0003	0.0032		
15:49	0.03	0.03	0.03	0.0002	0.0002	0.0014		
15:50	0.06	0.06	0.05	0.0003	0.0004	0.0027		
Minimum event	0.07	0.06	0.09	0.0003	0.0004	0.0032		
Maximum event	0.03	0.03	0.03	0.0002	0.0002	0.0014		

Table 11: Vibration Monitoring Results at ANML003

2.3.4 Location AVML004

Table 12 presents the results of vibration values associated with individual bus drive events by during the monitoring period at this location.

Event Time	PPV, mm/s			VDV, _b , m/s ^{1.75}			
	x	Y	Z	x	Y	Z	
16:04	0.08	0.12	0.1	0.0006	0.0008	0.0060	
16:06	0.09	0.1	0.13	0.0004	0.0006	0.0061	
16:08	0.1	0.13	0.11	0.0005	0.0008	0.0049	
16:09	0.07	0.1	0.12	0.0005	0.0006	0.0049	
16:10	0.11	0.12	0.15	0.0006	0.0007	0.0072	
16:11	0.08	0.09	0.1	0.0005	0.0006	0.0046	
16:12	0.07	0.08	0.11	0.0004	0.0006	0.0059	
16:13	0.07	0.09	0.11	0.0004	0.0005	0.0054	
Minimum event	0.11	0.13	0.15	0.0006	0.0008	0.0072	
Maximum event	0.07	0.08	0.1	0.0004	0.0005	0.0046	

Table 12: Vibration Monitoring Results at ANML004

2.3.5 Location AVML005

Table 13 presents the results of vibration values associated with individual bus drive events by during the monitoring period at this location.

Table 13: Vibration Monitoring Results at ANML005

Event Time	PPV, mm/s			VDV, _b , m/s ^{1.75}			
	X	Y	Z	X	Y	Z	
16:36	0.03	0.02	0.03	0.0002	0.0002	0.0013	
16:39	0.02	0.03	0.03	0.0002	0.0002	0.0017	
16:40	0.03	0.04	0.04	0.0002 0.0003		0.0015	
16:44	0.03	0.04	0.06	0.0002	0.0003	0.0021	
16:46	0.03	0.03	0.03	0.0002	0.0002	0.0012	
16:47	0.03	0.03	0.03	0.0002	0.0002	0.0013	
16:48	0.03	0.03	0.04	0.0002	0.0002	0.0012	
Minimum event	0.02	0.02	0.03	0.0002	0.0002	0.0012	
Maximum event	0.03	0.04	0.06	0.0002	0.0003	0.0021	

2.4 Survey Results – Malahide Road

2.4.1 Location AVML006

Table 14 presents the results of vibration values measured during each one minute sample period at this location with periods during a bus or HGV drive by noted.

Event Time	PPV, mm/s			VDV, _b , m/s ^{1.75}			Notes
	x	Y	z	x	Υ	Z	
11:23	0.03	0.03	0.07	0.0002	0.0002	0.0020	
11:24	0.03	0.02	0.06	0.0002	0.0001	0.0018	
11:25	0.03	0.03	0.10	0.0002	0.0002	0.0030	Bus
11:26	0.02	0.02	0.06	0.0002	0.0002	0.0015	HGV
11:27	0.03	0.03	0.07	0.0002	0.0002	0.0030	
11:28	0.02	0.02	0.05	0.0001	0.0001	0.0019	
11:29	0.05	0.03	0.08	0.0002	0.0002	0.0033	Bus
11:30	0.04	0.16	0.17	0.0002	0.0008	0.0027	HGV
11:31	0.02	0.02	0.03	0.0001	0.0001	0.0017	
11:32	0.04	0.05	0.07	0.0002	0.0002	0.0029	HGV
11:33	0.03	0.03	0.05	0.0002	0.0002	0.0020	
11:34	0.02	0.02	0.04	0.0002	0.0001	0.0015	Bus
11:35	0.04	0.04	0.13	0.0002	0.0002	0.0050	HGV
11:36	0.02	0.02	0.04	0.0001	0.0002	0.0015	
11:37	0.02	0.02	0.05	0.0002	0.0002	0.0020	Bus
11:38	0.02	0.02	0.03	0.0001	0.0001	0.0014	
11:39	0.04	0.03	0.10	0.0002	0.0002	0.0037	
11:40	0.03	0.04	0.12	0.0002	0.0002	0.0026	
11:41	0.07	0.06	0.15	0.0003	0.0002	0.0056	
11:42	0.05	0.03	0.11	0.0002	0.0002	0.0040	
11:43	0.04	0.04	0.05	0.0002	0.0002	0.0023	HGV
11:44	0.03	0.08	0.08	0.0002	0.0004	0.0021	
11:45	0.03	0.03	0.05	0.0002	0.0002	0.0025	HGV
11:46	0.04	0.04	0.06	0.0002	0.0002	0.0027	HGV
11:47	0.02	0.03	0.04	0.0001	0.0002	0.0012	
11:48	0.04	0.04	0.10	0.0003	0.0002	0.0036	
11:49	0.06	0.04	0.08	0.0003	0.0002	0.0028	
11:50	0.03	0.02	0.05	0.0002	0.0002	0.0020	
11:51	0.03	0.04	0.05	0.0002	0.0003	0.0021	
11:52	0.04	0.05	0.21	0.0003	0.0003	0.0053	
Maximum all traffic	0.07	0.16	0.17	0.0003	0.0008	0.0056	
Maximum bus	0.05	0.03	0.10	0.0002	0.0002	0.0033	

Table 14: Vibration Monitoring Results at ANML006

2.4.2 Location AVML007

Table 15 presents the results of vibration values measured during each one minute sample period at this location with periods during a bus or HGV drive by noted.

Table 15: Vibration Monitoring Results at ANML007

Event Time	PPV, mm/s			VDV,,, m/s ^{1.7}	5		Notes
	x	Y	z	X	Y	Z	
11:55	0.03	0.02	0.04	0.0002	0.0001	0.0011	HGV
11:56	0.03	0.04	0.03	0.0002	0.0002	0.0011	
11:57	0.02	0.06	0.06	0.0002	0.0003	0.0011	
11:58	0.03	0.03	0.02	0.0002	0.0002	0.0004	
11:59	0.02	0.03	0.03	0.0001	0.0002	0.0008	
12:00	0.02	0.02	0.02	0.0001	0.0001	0.0005	
12:01	0.02	0.03	0.02	0.0001	0.0002	0.0005	
12:02	0.03	0.02	0.03	0.0002	0.0002	0.0009	
12:03	0.03	0.03	0.02	0.0002	0.0002	0.0008	
12:04	0.02	0.03	0.02	0.0001	0.0001	0.0004	
12:05	0.02	0.02	0.03	0.0002	0.0002	0.0011	
12:06	0.03	0.03	0.02	0.0002	0.0002	0.0006	Bus
12:07	0.02	0.05	0.05	0.0001	0.0002	0.0008	Bus
12:08	0.02	0.02	0.02	0.0002	0.0001	0.0007	Bus
12:09	0.02	0.02	0.03	0.0001	0.0002	0.0008	
12:10	0.02	0.03	0.02	0.0002	0.0002	0.0005	Bus
12:11	0.02	0.02	0.02	0.0001	0.0002	0.0009	
12:12	0.02	0.02	0.02	0.0001	0.0002	0.0003	
12:13	0.02	0.02	0.02	0.0001	0.0001	0.0007	Bus
12:14	0.02	0.02	0.02	0.0001	0.0002	0.0009	
12:15	0.02	0.02	0.02	0.0001	0.0001	0.0008	
12:16	0.02	0.02	0.02	0.0001	0.0001	0.0005	
12:17	0.02	0.02	0.02	0.0001	0.0001	0.0005	Bus
12:18	0.02	0.03	0.03	0.0002	0.0002	0.0008	
12:19	0.03	0.03	0.03	0.0002	0.0002	0.0010	
12:20	0.02	0.02	0.02	0.0002	0.0002	0.0009	Bus
12:21	0.02	0.02	0.04	0.0001	0.0001	0.0012	
12:22	0.02	0.03	0.03	0.0001	0.0002	0.0010	
Maximum all traffic	0.03	0.06	0.06	0.0002	0.0003	0.0012	
Maximum bus	0.03	0.05	0.05	0.0002	0.0002	0.0009	

2.4.4 Location AVML008

Table 16 presents the results of vibration values measured during each one minute sample period at this location with periods during a bus or HGV drive by noted.

Event Time	PPV, mm/s			VDV,,, m/s ^{1.7}	5		Notes
	x	Y	Z	X	Y	Z	
12:31	0.02	0.02	0.06	0.0001	0.0001	0.0004	Bus
12:32	0.02	0.06	0.08	0.0001	0.0003	0.0009	
12:33	0.02	0.03	0.04	0.0001	0.0002	0.0012	Bus
12:34	0.02	0.02	0.02	0.0001	0.0001	0.0004	HGV
12:35	0.02	0.02	0.04	0.0002	0.0002	0.0010	
12:36	0.02	0.02	0.02	0.0002	0.0002	0.0006	
12:37	0.02	0.02	0.02	0.0001	0.0001	0.0003	
12:38	0.02	0.03	0.03	0.0001	0.0002	0.0005	
12:39	0.02	0.03	0.02	0.0001	0.0002	0.0005	
12:40	0.03	0.03	0.02	0.0002	0.0002	0.0006	
12:41	0.04	0.03	0.02	0.0003	0.0002	0.0005	
12:42	0.03	0.02	0.03	0.0002	0.0001	0.0013	Bus
12:43	0.06	0.07	0.18	0.0003	0.0003	0.0057	
12:44	0.01	0.02	0.02	0.0001	0.0001	0.0004	Bus
12:45	0.02	0.03	0.05	0.0001	0.0002	0.0015	
12:46	0.02	0.02	0.03	0.0001	0.0001	0.0010	
12:47	0.02	0.03	0.03	0.0001	0.0001	0.0007	HGV
12:48	0.02	0.03	0.03	0.0001	0.0002	0.0010	HGV
12:49	0.02	0.02	0.02	0.0001	0.0001	0.0005	
12:50	0.02	0.02	0.02	0.0001	0.0001	0.0004	
12:51	0.02	0.02	0.02	0.0001	0.0002	0.0004	
12:52	0.02	0.02	0.02	0.0001	0.0002	0.0005	Bus
12:53	0.02	0.02	0.03	0.0001	0.0002	0.0009	
12:54	0.02	0.03	0.04	0.0001	0.0002	0.0012	
12:55	0.02	0.02	0.02	0.0001	0.0002	0.0003	
12:56	0.04	0.05	0.23	0.0002	0.0003	0.0056	HGV
12:57	0.02	0.03	0.05	0.0001	0.0002	0.0017	Bus
12:58	0.02	0.02	0.04	0.0001	0.0001	0.0012	
12:59	0.02	0.03	0.02	0.0001	0.0002	0.0006	
Maximum all traffic	0.06	0.07	0.23	0.0003	0.0003	0.0057	
Maximum bus	0.03	0.03	0.06	0.0002	0.0002	0.0017	

2.4.5 Location AVML009

Table 17 presents the results of vibration values measured during each one minute sample period at this location with periods during a bus or HGV drive by noted.

Table 17: Vibration Monitoring Results at ANML009

Event Time	PPV, mm/s			VDV,,, m/s ^{1.7}	5		Notes	
	x	Υ	z	X	Y	Z		
13:05	0.03	0.02	0.05	0.0001	0.0001	0.0012		
13:06	0.02	0.04	0.03	0.0002	0.0001	0.0011	Bus	
13:07	0.04	0.05	0.08	0.0002	0.0002	0.0028	HGV	
13:08	0.04	0.05	0.06	0.0002	0.0002	0.0019		
13:09	0.04	0.03	0.03	0.0002	0.0002	0.0011		
13:10	0.03	0.04	0.04	0.0002	0.0001	0.0012		
13:11	0.03	0.04	0.04	0.0002	0.0001	0.0011		
13:12	0.02	0.03	0.04	0.0002	0.0001	0.0012	Bus	
13:13	0.03	0.06	0.04	0.0002	0.0003	0.0013		
13:14	0.03	0.04	0.03	0.0002	0.0002	0.0012	Bus	
13:15	0.04	0.04	0.04	0.0002	0.0003	0.0014	Bus	
13:16	0.04	0.04	0.09	0.0002	0.0001	0.0028	HGV	
13:17	0.06	0.06	0.05	0.0002	0.0002	0.0016		
13:18	0.03	0.04	0.05	0.0002	0.0002	0.0016	Bus	
13:19	0.02	0.03	0.03	0.0001	0.0001	0.0008		
13:20	0.04	0.04	0.03	0.0002	0.0002	0.0011	Bus	
13:21	0.03	0.03	0.03	0.0001	0.0001	0.0011	Bus	
13:22	0.04	0.04	0.09	0.0002	0.0002	0.0030		
13:23	0.03	0.03	0.03	0.0001	0.0001	0.0013		
13:24	0.02	0.03	0.05	0.0001	0.0002	0.0012	HGV	
13:25	0.03	0.03	0.05	0.0002	0.0002	0.0014		
13:26	0.03	0.05	0.05	0.0002	0.0003	0.0015	Bus	
13:27	0.03	0.04	0.04	0.0002	0.0002	0.0012		
13:28	0.02	0.04	0.04	0.0001	0.0002	0.0008	Bus	
13:29	0.04	0.05	0.04	0.0003	0.0003	0.0022		
13:30	0.03	0.03	0.08	0.0002	0.0002	0.0022		
13:31	0.04	0.04	0.03	0.0002	0.0002	0.0011		
13:32	0.02	0.02	0.04	0.0001	0.0001	0.0011		
13:33	0.02	0.03	0.04	0.0002	0.0002	0.0014		
13:05	0.03	0.02	0.05	0.0001	0.0001	0.0012		
Maximum all traffic	0.06	0.06	0.09	0.0003	0.0003	0.0030		
Maximum bus	0.04	0.05	0.05	0.0002	0.0003	0.0016		

3. References

British Standard Institute (BSI) (1990). British Standard (BS) 7385: 1990: Evaluation and measurement for vibration in buildings. Part 1: Guide for measurement of vibrations and evaluation of their effects on buildings.

BSI (2008). BS 6472-1: 2008 Guide to evaluation of human exposure to vibration in buildings. Part 1 Vibration sources other than blasting.

ISO (2016). ISO 1996-1:2016 Acoustics - Description, measurement and assessment of environmental noise. Part 1: Basic quantities and assessment procedures.

ISO (2017). ISO 1996-2:2017 - Description, measurement and assessment of environmental noise - Part 2: Determination of sound pressure levels.

Transport Infrastructure Ireland (TII) (previously National Roads Authority (NRA)) (2014). Guidelines for the Treatment of Noise and Vibration in National Road Schemes, Revision 1.

UK Department of Transport (1998). The UK Department of Transport Calculation of Road Traffic Noise.

Directives and Legislation

S.I. No. 140/2006 – European Communities (Environmental Noise) Regulations 2006.

4. Calibration Certificates for Monitoring Equipment

4.1 Rion NL-52 S/N 186672

Jacobs ARUP SYSTIA

MEASUREMENT	S Y STEMS	CERTIFICAT OF CALIBRATIC	E CON	WRA UKAS CALIBRATION 0653
Date of Issue: 04 Issued by: ANV Measurement Sys Beaufort Court 17 Roebuck Way Milton Keynes MK5 8H Telephone 01908 6428- E-Mail: info@noise-and Web: www.noise-and-w	May 2020 tems L 46 Fax 01908 6428 -vibration.co.uk	Certifica Approved 3	Page 1 of Signatory	RT20/1388
Acoustics Noise and Vibration Ltd Customer	trading as ANV Measurement AWN Consultin The Tecpro Bui IDA Business a Clonshaugh Dublin 17	g lding nd Technology Park		
Order No. Description Identification	RM/20/Cal019 Sound Level Me <i>Manufacturer</i> Rion Rion Rion Rion Brüel & Kjær	eter / Pre-amp / Microphe Instrument Sound Level Meter Firmware Pre Amplifier Microphone Calibrator	one / Associated (<i>Type</i> NL-52 NH-25 UC-59 4231	Calibrator Serial No. / Version 00186672 2.0 76822 12818 2205805
Performance Class Test Procedure Type Approved to IEC Date Received Date Calibrated	1 TP 2.SLM 6167 Procedures from 61672-1:2002 If YES above ther applicable pattern 30 April 2020 04 May 2020	Calibrator adaptor typ 2-3 TPS-49 IEC 61672-3:2006 were us YES Approval I re is public evidence that th evaluation tests of IEC 61 AN\	e if applicable sed to perform the p Number 21.: e SLM has success 672-2:2003 / Job No. UK/	UC 0210 periodic tests. 21 / 13.02 sfully completed the AS20/04240
The sound level mete 61672-3:2006, for the was available, from a evaluation tests perfo level meter fully confo testing conforms to the	er submitted for te environmental cou in independent tes rmed in accordanc ormed to the require e class 1 requirem	sting has successfully c nditions under which the sting organisation respo ce with IEC 61672-2:200 rements in IEC 61672-1 uents of IEC 61672-1:200	completed the class tests were perfor insible for approv 03, to demonstrate :2002, the sound 02.	ss 1 periodic tests of IEC rmed. As public evidence ing the results of pattern e that the model of sound level meter submitted for

 Previous Certificate
 Dated
 Certificate No.
 Laboratory

 20 April 2018
 UCRT18/1439
 0653

 This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

CERTIFICATE C	OF CALIB	RATION		Certif	icate UCR1	Num 20/13	ber 88		
UKAS Accredited Calibratio	n Laboratory N	o. 0653		Page	2	of	2	Pages	
Sound Level Meter Instruction ma	nual and data	used to adjust the	soun	d level	s indi	cated.			
SI M instruction manual title Sou	nd Level Meter	NI -42 / NI -52						,	_

SLM Instruction manual tit	le Sound Level	Meter	NL-42 / N 11-03	L-52						
SLM instruction manual se	ource	M	anufacture	r						
Internet download date if a	annlicable	1416	N/Δ							
Case corrections available	applicable		Ves							
Uncertainties of case corr	ections		Vec							
Source of case data	0010115	M	anufacture	r						
Wind screen corrections a	vailable	1016	Yes	1						
Uncertainties of wind scre	en corrections		Yes							
Source of wind screen dat	a	Ma	anufacture	r						
Mic pressure to free field of	corrections		Yes	-						
Uncertainties of Mic to F.F	. corrections		Yes							
Source of Mic to F.F. corre	ections	Ma	anufacture	r						
Total expanded uncertaint	ies within the requir	ements o	f IEC 6167	2-1:20	02	Yes				
Specified or equivalent Ca	librator	1	Specified							
Customer or Lab Calibrato	or	Custor	ners Calib	rator						
Calibrator adaptor type if a	applicable	1	UC 0210							
Calibrator cal. date		06 De	cember 2	019						
Calibrator cert. number		UC	RT19/233	3						
Calibrator cal cert issued b	by		0653							
Calibrator SPL @ STP	-	93	3.95	dB	Calibra	ation re	eference	ce sound p	ressure l	evel
Calibrator frequency		999.97 Hz Calibration check frequency								
Reference level range		25	- 130	dB						,
Accessories used or corre	cted for during calib	ration -	Exten	sion C	able & V	Vind S	hield	WS-15		
Note - if a pre-amp extens	ion cable is listed th	en it was	used betw	een th	e SLM a	and the	e pre-a	amp.		
Environmental conditions	during tests	S	tart		End					
	Temperature	22	2.56	<u> </u>	22.99		+	0.30 °C		
	Humidity	3	8.4		39.3			3.00 %R	न	
	Ambient Pressure	10	1.05		101.04		±	0.03 kPa	4	
Response to associated C	alibrator at the envir	ronmenta	l condition	s abov	e.				_	
Initial indicated level	94.2	dB	Adi	usted in	ndicated	level		93.9	dB	1
The uncertainty of the asso	ociated calibrator su	pplied wit	th the sour	nd leve	l meter	±		0.10	dB	1
Self Generated Noise	This test is currently	y not perfe	ormed by f	his Lat	D.					_
Microphone installed (if rec	Microphone installed (if requested by customer) = Less Than N/A dB A Weighting									1
Uncertainty of the microphone installed self generated noise ± N/A dB								-		
Microphone replaced with	electrical input devic	ce -	UR =	Under	Range i	indicat	ed	Ĺ		

The second	Weishtige					OIL	ondor	r tunge maie	alou	
	Weighting	A			С			Z	Z	
		12.5	dB	UR	16.0	dB	UR	21.7	dB	UR
Uncertainty of the electrical self generated nois				se ±			0.12	dB		

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

For the test of the frequency weightings as per paragraph 12. of IEC 61672-3:2006 the actual microphone free field response was used.

The acoustical frequency tests of a frequency weighting as per paragraph 11 of IEC 61672-3:2006 were carried out using an electrostatic actuator.

END	
Calibrated by: B. Giles	R 2
Additional Comments The results on this certificate only relate to the items calibrated as identified above.	
None	

4.2 Rion NL-52 S/N 186668

Jacobs ARUP SYSTIA

61672-3:2006, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organisation responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2003, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2002, the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1:2002.

revious Certificate Dated (Certificate No.	Laboratory	
	20 April 2018	UCRT18/1436	0653	
This certificate is issued	d in accordance with the	laboratory accreditation	requirements of the	United Kingdom
Accreditation Service. It p	rovides traceability of measure	surement to the SI system	of units and/or to unit	ts of measurement
realised at the National P	hysical Laboratory or other	r recognised national metr	ology institutes. This	certificate may not
be reproduced other than	in full, except with the prior	r written approval of the iss	uing laboratory.	

CERTIFICATE OF CALIBRATION	Certificate Number UCRT20/1405						
UKAS Accredited Calibration Laboratory No. 0653	Page	2	of	2	Pages		
d Level Meter Instruction manual and data used to adjust the sour	nd level	s indi	cated				

Sound Level Met	er Instruc	tion ma	anual ar	nd dat	a usec	to ad	just th	e sour	d leve	els inc	dicated			
SLM instruction ma	anual title	Sou	and Leve	Meter	r NL-	-42 / N	L-52							
SLM instruction ma	anual ref /	issue			11	-03								
SLM instruction ma	anual sour	ce			Manu	facture	r							
Internet download	date if app	licable			١	I/A								
Case corrections a	vailable				Y	'es								
Uncertainties of ca	se correcti	ions			Y	'es								
Source of case dat	a				Manu	facture	r							
Wind screen corre	ctions avai	ilable			Y	'es								
Uncertainties of wi	nd screen	correcti	ons		Ŷ	'es								
Source of wind scr	een data				Manu	facture	r							
Mic pressure to fre	e field corr	rections			Y	es								
Uncertainties of Mi	c to F.F. c	orrection	าร		Ŷ	es								
Source of Mic to F.	F. correcti	ons			Manu	facture	r							
Total expanded un	certainties	within t	he requi	rement	s of IE	C 6167	2-1:20	02	Yes					
Specified or equiva	lent Calibr	ator		~	Spe	cified								
Customer or Lab C	alibrator			Cu	stomer	s Calib	rator							
Calibrator adaptor	type if app	licable			UC	0210								
Calibrator cal. date				06	Decer	mber 2	019							
Calibrator cert. nun	nber				UCRT	19/233	3							
Calibrator cal cert i	ssued by				06	653								
Calibrator SPL @ S	STP				93.95	i i	dB	Calibra	ation re	eferen	ce sour	nd pres	ssure le	evel
Calibrator frequence	y				999.9	7	Hz	Calibra	ation c	heck f	requen	су		
Reference level rar	ige				25 - 13	0	dB							
Accessories used of	or correcte	d for du	ring calib	oration	-	Exten	sion Ca	able & \	Wind S	Shield	WS-15			
Note - if a pre-amp	extension	cable is	s listed th	nen it w	/as use	ed betw	een th	e SLM	and th	e pre-	amp.			
Environmental con	ditions dur	ing tests	6		Start			End						
	Te	mperatu	ire		23.24			23.17		±	0.30	°C	1	
	Hu	midity			35.0			37.5			3.00	%RH	1	
	Am	bient P	ressure		101.20)		101.19		±	0.03	kPa	1	
Response to assoc	iated Calib	prator at	the envi	ronme	ntal co	ndition	s abov	e.						
Initial indicate	d level	94.	0	dB		Adiu	isted in	dicated	level		93.9		dB	
The uncertainty of t	he associa	ated cali	brator su	pplied	with th	ne sour	nd leve	meter	±		0.10		dB	
Self Generated Noi	se Thi	is test is	currentl	y not p	erform	ed by t	his Lat) .						
Microphone installe	d (if reque	sted by	custome	er) = L	ess Th	an		N/A		dB /	A Weig	hting		
Uncertainty of the n	Uncertainty of the microphone installed self generated noise ± N/A dB													
Microphone replace	d with eler	ctrical in	put devi	ce -	1	UR =	Under	Range	indicat	ted	1			
Weighting		A			. (Ċ			Z	2				
	12.4	dB	UR	10	3.2	dB	UR	22	.1	dB	UR			

Uncertainty of the electrical self generated noise ± 0.12

Prior to calibration the instrument's main PCB was replaced and the meter was re-aligned.

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

dB

For the test of the frequency weightings as per paragraph 12. of IEC 61672-3:2006 the actual microphone free field response was used.

The acoustical frequency tests of a frequency weighting as per paragraph 11 of IEC 61672-3:2006 were carried out using an electrostatic actuator.

	END
Calibrated by: B. Bogdan	R 2
Additional Comments The results on this certificate	only relate to the items calibrated as identified above.

Clongriffin to City Centre Core Bus Corridor Scheme

4.3 Bruel and Kjaer 2250L

Date of Issue: 04 November 2019 Issued by: ANV Measurement Systems Beaufort Court 17 Roebuck Way Milton Keynes MK5 8HL Telephone 01908 642846 Fax 01908 642814 E-Mail: info@noise-and-vibration.co.uk Web: www.noise-and-vibration.co.uk Acoustics Noise and Vibration Ltd trading as ANV Measurement Systems

Certificate Number: UCRT19/2218

- CUSTOMER AWN Consulting Limited The Tecpro Building IDA Business and Technology Park Clonshaugh Dublin 17 Ireland
- ORDER No DOD/19/Cal013

Job No UKAS19/11718

DATE OF RECEIPT 01 November 2019

PROCEDURE Calibration Engineer's Handbook, section 25: periodic testing of sound level meters to IEC 61672-3:2006 (BS EN 61672-3:2006) as modified by UKAS TPS 49 Edition 2:June 2009

IDENTIFICATION Sound level meter Brüel & Kjær type 2250-L serial No 3008402 connected via a preamplifier type ZC 0032 serial No 22882 to a halfinch microphone type 4950 serial No 3016830. Associated calibrator Brüel & Kjær type 4231 serial No 2263026 with a one-inch housing and adapter type UC 0210 for half-inch microphone.

- CALIBRATED ON 04 November 2019
- PREVIOUS Calibrated on 16 October 2017, Certificate No. UCRT17/1897 issued by this laboratory.

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

CERTIFICATE OF CALIBRATION

UKAS ACCREDITED CALIBRATION LABORATORY No 0653

Certificate No UCRT19/2218

Page 2 of 3 Pages

The sound level meter was set up using the type 4231 sound calibrator supplied; it was set to frequency weighting A, and initially read 94.1 dB. It was then adjusted to read 93.9 dB (corresponding to 93.9 dB at standard atmospheric pressure). This reading was derived from Calibration Certificate no. UCRT19/2217 supplied by this laboratory and manufacturers' information on the free-field response of the sound level meter. The calibration check frequency was 1kHz. The final microphone sensitivity calculated and stored by the instrument was 45.25 mV/Pa.

Procedures from IEC 61672-3:2006 (BS EN 61672-3:2006) as modified by UKAS TPS 49 Edition 2:June 2009 were used to perform the periodic tests.

RESULTS

The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2006 (BS EN 61672-3:2006), for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2 : 2003 (BS EN 61672-2 : 2003), to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1 : 2002 (BS EN 61672-1 : 2003), the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1 : 2002 (BS EN 61672-1 2003).

The self-generated noise recorded with the microphone replaced by the electrical input device was:

13.4 dB (A) 13.8 dB (C) 19.5 dB (Z)

The environmental conditions recorded at the start and end of testing were: Start: 23 to 24 °C, 31 to 41 %RH and 97.2 to 97.3 kPa End: 24 to 25 °C, 34 to 44 %RH and 97.2 to 97.3 kPa

Technical information including adjustment data specified in the manufacturers' Instruction Manual BE 1774-11 (2007) and User Manual BE 1766 has been used to carry out this verification. These data include manufacturer-specified uncertainties.

Publicly-available evidence has been found that the B&K 2250-L sound level meter design has successfully undergone pattern evaluation in accordance with IEC 61672-2:2002 (BS EN 61672-2:2003) by Physikalisch-Technische Bundesanstalt (PTB), an independent testing organisation responsible for pattern approvals.

All measurement data are held at ANV Measurement Systems for a period of at least six years.

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

CERTIFICATE OF CALIBRATION

Certificate No UCRT19/2218

Page 3 of 3 Pages

UKAS ACCREDITED CALIBRATION LABORATORY No 0653

NOTES

Any opinions or interpretations which may be expressed in the following notes are not UKAS Accredited.

- 1 All tests were carried out in "Broad Band".
- 2 Windscreen correction was set to "None", soundfield to "Free-field" and microphone to "4950".
- 3 No suitable microphone frequency response information was supplied with the instrument. It was therefore measured by this laboratory using the electrostatic actuator method. This response in isolation is not UKAS Accredited.
- 4 It was noted that in order to obtain the correct A-weighted response to the sound calibrator, the relevant software setting in the meter had to be changed from '4231' to 'custom' with the appropriate calibration level entered.
- 5 The electrical tests have been carried out with the instrument set for the nominal microphone sensitivity, as specified in the Instruction Manual. This may mean that the instrument has a slightly different linearity range when in normal use.
- 6 Typical case reflection factors specified by the manufacturer have been used for this verification.

Module i.d.	Function	Version	Active?	Licenced?	Template used?
BZ 7130	SLM	4.7.5	Y	Y	Y
BZ 7131	Octave analysis	4.7.5	Y	N	N/A
BZ 7132	1/3-oct analysis	4.7.5	Y	Y	N/A
BZ 7133	Logging	4.7.5	Y	Y	N/A
BZ 7226	Signal Recording Option	4.7.5	Y	N	N/A
BZ 7231	Tone Assessment	4.7.5	Y	N	N/A
BZ 7232	Noise Monitoring Software	4.7.5	Y	N	N/A
BZ	N/A	N/A	N/A	N/A	N/A
BZ	N/A	N/A	N/A	N/A	N/A
BZ	N/A	N/A	N/A	N/A	N/A

The instrument was running on hardware version 4.0 The instrument firmware settings were:

The results on this certificate only relate to the items calibrated as identified above.

4.4 Rion VM-56 (S/N 680043)

CERTIFICATE OF CALIBRATION

Date of Issue: 01 M Issued by: ANV Measurement Syste Beaufort Court 17 Roebuck Way Milton Keynes MK5 8HL Telephone 01908 642846 E-Mail: info@noise-and-vib Acoustics Noise and Vibration Ltid tre	Certificate Numl Page Approved Signatory K. Mistry	1	of	19/1 3	825 Pages	
Client	AWN Consulting Limited The Tecpro Building, IDA Busine Dublin 17 Ireland	ess & Technology Park	, Clons	shaugh	ı	
Purchase Order No.	DOD/19/Cal03					
Instrument	Rion VM-56 Tri-Axial Vibration M	leter				
Serial No.	00680043					
Accelerometer Type	VM-56					
Accelerometer Serial No.	80047					
Program	2.0					
Client Asset No.	N/A					
Procedure ID.	VM-56 Issue 1					
Job Number	TRAC19/11477					
Date of Calibration	01 Nov 2019					
Previous Cert. number	N/A					
Date of Previous Cert.	N/A					
Rig Number	6					
Kit Number	24					
Calibration Status	Passed Calibration					

This calibration is traceable to National Standards. ANV Measurement Systems sources used to perform calibrations are calibrated at the National Physical Laboratory or by UKAS laboratories accredited for the purpose.

The performance of the system (the meter, accelerometer) was found to be within the manufacturer's specification.

<u>Comment</u> This certificate reports recorded values for the instrument 'As Received'.

Certificate Number TCRT19/1825 Page 2 of 3 Pages

Environment

The ambient environmental conditions at the time of the calibration were;

Temperature: $22.9 \pm 1^{\circ}$ C, Humidity: $40 \pm 5\%$ RH, Atmospheric pressure 98.2 ± 1 kPa <u>Test results</u>

Each accelerometer axis was mounted co-axially with a Rion LS-10C servo accelerometer, and tests conducted for the dynamic range, PPV linearity and frequency response of the complete system. Additional electrical tests were carried out on the amplitude linearity of the instrument.

PPV linearity response for the complete system at 16 Hz Weightings for all channels turned OFF

With PV-83CW serial No. 80047

Target Vel.	Actual Vel.	Indicated (X)	Error (X)	Indicated (Y)	Error (Y)	Indicated (Z)	Error (Z)
mm/s	mm/s	mm/s	%	mm/s	%	mm/s	%
0.50	0.51	0.57	11.56	0.55	7.65	0.54	5.69
1.00	1.02	1.09	6.67	1.08	5.69	1.06	3.73
2.50	2.55	2.67	4.51	2.66	4.12	2.60	1.77
5.00	5.11	5.31	3.93	5.30	3.73	5.18	1.38
10.00	10.13	10.59	4.50	10.43	2.92	10.35	2.13
20.00	20.27	21.24	4.80	21.03	3.76	20.61	1.69

Permitted tolerance ± 10% ± 1 LSD (Least Significant Digit).

Linearity errors in dB measured electrically at 40 Hz

Weightings for all channels turned OFF

Level changes in dB; reading error in dB given for each axis. "m/s²" is actual reading in m/s².

1 m/s² Range

Level dB	Error (X) dB	m/s² (X)	Error (Y) dB	m/s² (Y)	Error (Z) dB	m/s² (Z)
0	REF	0.98154	REF	0.98129	REF	0.98130
-20	-0.01	0.09805	-0.01	0.09802	-0.01	0.09803
-40	-0.02	0.00979	-0.02	0.00979	-0.02	0.00979
-60	-0.10	0.00097	-0.10	0.00097	-0.10	0.00097
-66	-0.03	0.00049	-0.21	0.00048	-0.03	0.00049
-72	-0.23	0.00024	-0.23	0.00024	-0.23	0.00024

Permitted tolerance ±1.0 dB.

10 m/s² Range

Level dB	Error (X) dB	m/s² (X)	Error (Y) dB	m/s² (Y)	Error (Z) dB	m/s² (Z)
20	-0.03	9.79122	-0.03	9.75526	-0.03	9.73534
0	REF	0.98208	REF	0.97857	REF	0.97679
-20	-0.01	0.09808	-0.01	0.09775	-0.01	0.09758
-30	-0.01	0.03102	-0.03	0.03085	-0.06	0.03067
-40	0.04	0.00987	-0.02	0.00976	0.02	0.00979
-52	-0.31	0.00238	0.69	0.00266	-0.01	0.00245

Permitted tolerance ±1.0 dB.

Certificate Number TCRT19/1825

Page 3 of 3 Pages

Frequency Responses For Complete System

MEASUREMENT STATEMS

Measured on the 1 m/s² range with weightings as indicated in the table and PV-83CW serial No. 80047

Frequency Hz	Applied Acc. m/s ²	X (Wd) rms m/s ²	Error X %	VDV (X) m/s ^{1.75}	Error X %
3.981	0.285	0.15654	5.4	0.30765	5.3
5.012	0.355	0.15445	5.2	0.30359	5.1
6.310	0.355	0.12187	5.1	0.23974	5.0
7.943	0.355	0.09586	4.5	0.18849	4.4
10.00	0.355	0.07622	4.9	0.14987	4.8
12.59	0.355	0.06052	5.3	0.11912	5.3
15.85	0.355	0.04836	6.2	0.09515	6.2
19.95	0.550	0.06014	7.3	0.11834	7.3

Frequency Hz	Applied Acc. m/s ²	Y (Wd) rms m/s ²	Error Y %	VDV (Y) m/s ^{1.75}	Error Y %
3.981	0.285	0.15640	5.3	0.30743	5.2
5.012	0.355	0.15372	4.7	0.30199	4.5
6.310	0.355	0.12149	4.7	0.23878	4.6
7.943	0.355	0.09627	5.0	0.18928	4.9
10.00	0.355	0.07622	4.9	0.14987	4.8
12.59	0.355	0.06054	5.3	0.11907	5.3
15.85	0.355	0.04850	6.5	0.09539	6.5
19.95	0.550	0.06064	8.2	0.11932	8.2

Frequency Hz	Applied Acc. m/s ²	Z (Wb) rms m/s ²	Error Z %	VDV (Z) m/s ^{1.75}	Error Z %
3.981	0.285	0.26307	3.0	0.52192	3.8
5.012	0.355	0.37779	2.4	0.74853	3.1
6.310	0.355	0.38731	2.1	0.76723	2.7
7.943	0.355	0.37632	2.0	0.74338	2.4
10.00	0.355	0.35641	1.6	0.70262	1.7
12.59	0.355	0.32928	1.2	0.64883	1.3
15.85	0.355	0.29668	1.3	0.58400	1.3
19.95	0.550	0.39872	0.8	0.78497	0.8
25.12	0.550	0.33640	3.3	0.66184	3.3
31.62	0.550	0.27597	2.9	0.54310	2.9
39.81	0.550	0.21843	1.0	0.42982	1.0
50.12	0.550	0.17703	3.4	0.34836	3.3
63.10	0.550	0.13695	3.8	0.26950	3.8
79.43	0.550	0.10077	4.1	0.19832	4.1

Tolerance required @ 4 Hz to 63 Hz +12%/-11% ; @ 80 Hz +26%/-21%

All results meet the manufacturer's specification.

END OF CALIBRATION

CALIBRATED BY :- A. Lloyd

5. Unattended Monitoring Equipment Set Up

CBC0001UNML001 Origrass, in front residential garden 125m for Malahide Road / Kilmore Road Junction. Located garden 2000. Image: Comparison of the temperature of the temperature of temp	Location	Equipment Set up
	CBC0001UNML001 On grass, in front residential garden 125m to northwest of R107 Malahide Road / Kilmore Road Junction. Located approximately 5m from R107 road edge.	